
Code Critiquer in C

DESIGN DOCUMENT

Team 34

Client: Iowa State University and Michigan Tech University

Advisor: Dr. Rover

TeamMembers/Roles:

Nicholas Carber

Conner Cook

Brandon Ford

Emily Huisinga

Sage Matt

Cade Robison

sdmay24-34.sd.ece.iastate.edu

https://sdmay24-34.sd.ece.iastate.edu

Revised:

September 10th, 2023

Version 1.0



Executive Summary

DEVELOPMENT STANDARDS & PRACTICES USED

● Software Practices:

○ Code Review: useful to double check work

○ Software Testing: while annoying, testing can help find mistakes

○ Follow naming conventions for C

● ABET Criteria:

○ Apply knowledge of mathematics, science, and engineering

○ Design a system, component, or process to meet desired needs within

realistic constraints

○ Identify, formulate, and solve engineering problems

SUMMARY OF REQUIREMENTS

● The critiquer should be easy and intuitive to use for novice programmers

● The messages from the program should be helpful and descriptive

● The program should catch most common antipatterns in C

APPLICABLE COURSES FROM IOWA STATE UNIVERSITY CURRICULUM

● COM S 185: basic introduction to C

● COM S 309: understanding project management

● COM S 311: understanding of algorithms

● COM S 317: understanding of software testing

● COM S 327: further development and understanding of C

● CPR E 288: understanding of embedded systems

NEW SKILLS/KNOWLEDGE ACQUIRED THAT WAS NOT TAUGHT IN COURSES

● Software project management

● Parsing a C program into key parts

● Identifying antipatterns in C

● Crafting error messages that are clear to novice programmers



Table of Contents

1 Team 5

1.1 TEAM MEMBERS 5

1.2 REQUIRED SKILL SETS FOR YOUR PROJECT 5

1.3 SKILL SETS COVERED BY THE TEAM 5

1.4 PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM 5

1.5 INITIAL PROJECT MANAGEMENT ROLES 5

2 Introduction 5

2.1 PROBLEM STATEMENT 5

2.2 REQUIREMENTS & CONSTRAINTS 5

2.3 ENGINEERING STANDARDS 5

2.4 INTENDED USERS AND USES 6

3 Project Plan 6

3.1 Project Management/Tracking Procedures 6

3.2 Task Decomposition 6

3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 6

3.4 Project Timeline/Schedule 6

3.5 Risks And Risk Management/Mitigation 7

3.6 Personnel Effort Requirements 7

3.7 Other Resource Requirements 7

4 Design 8

4.1 Design Context 8

4.1.1 Broader Context 8

4.1.2 User Needs 8

4.1.3 Prior Work/Solutions 8

4.1.4 Technical Complexity 9

4.2 Design Exploration 9

4.2.1 Design Decisions 9

4.2.2 Ideation 9

4.2.3 Decision-Making and Trade-Off 9

4.3 Proposed Design 9

4.3.1 Design Visual and Description 10

4.3.2 Functionality 10



4.3.3 Areas of Concern and Development 10

4.4 Technology Considerations 10

4.5 Design Analysis 10

4.6 Design Plan 10

5 Testing 11

5.1 Unit Testing 11

5.2 Interface Testing 11

5.3 Integration Testing 11

5.4 System Testing 11

5.5 Regression Testing 11

5.6 Acceptance Testing 11

5.7 Security Testing (if applicable) 11

5.8 Results 11

6 Implementation 12

7 Professionalism 12

7.1 Areas of Responsibility 12

7.2 Project Specific Professional Responsibility Areas 12

7.3 Most Applicable Professional Responsibility Area 12

8 Closing Material 12

8.1 Discussion 12

8.2 Conclusion 12

8.3 References 13

8.4 Appendices 13

8.4.1 Team Contract 13



List of figures/tables/symbols/definitions (This should be the similar to

the project plan)



1 - Team

1.1 TEAM MEMBERS

Nicholas Carber

Conner Cook

Brandon Ford

Emily Huisinga

Sage Matt

Cade Robison

1.2 REQUIRED SKILL SETS FOR YOUR PROJECT

1. Understanding Of C

2. Knowledge of patterns and anti-patterns in C

3. Understanding of common mistakes from new C programmers

4. Knowledge of CPR E 288

5. Agile Project Management

(if feasible – tie them to the requirements)

1.3 SKILL SETS COVERED BY THE TEAM

1. Everyone

2. No one

3. Everyone

4. Brandon Ford

5. Everyone

1.4 PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM

Agile structure - sprint length TBD (Probably 2-4 weeks)

1.5 INITIAL PROJECT MANAGEMENT ROLES

Design Document Maintainer / Official Submitter - Emily Huisinga

Website Maintainer - Sage Matt

Main Contact with Dr. Rover - Nicholas Carber

Michigan Tech Liaisons - Brandon Ford, Cade Robinson

System Sketch Maintainer - Nicholas Carber, Conner Cook

Developers - Everyone, to be divided further depending on specifics



2 - Introduction

2.1 PROBLEM STATEMENT

Novice C programmers, and more specifically CPR E 288 students, need an easy to use

tool to provide feedback on their C code and help them debug errors in their code.

2.2 REQUIREMENTS & CONSTRAINTS

UI Requirements

● The program should be able to be run through the command line and eventually a

GUI

● GUI should be simplistic and easy to use for novice programmers

● All feedback for errors should be presented to the users in a way novice

programmers can understand

Maintainability Requirements

● Database should be easy to update with new antipatterns as professors find more

● The project should be of the same design and standard that Michigan Tech has

developed for their other code critiquer in different languages

● Project should be well-documented and easy for another team to pick up when we

have completed our part

Functional Requirements

● Files in C should be uploaded successfully

● The program should be able to compile and run the uploaded code

● Should catch all compile time error

● Should catch all runtime errors that unexpectedly stop program or prevent

program from stopping

● Should catch most style errors

● The program should be able to communicate with a database that stores the C

antipatterns

Testing Requirements

● Should be tested with code from both novice and advanced programmers

Legal Requirements

● Ensure that there are no legal blocks with regards to using students' code to test

the software



Performance Requirements

● The code analysis process should take a reasonable amount of time

● The file upload should take a reasonable amount of time and have no loss of data

Constraints

● Time - We have two semesters to get this project designed and implemented

● Storage Space - We may have limited storage for our database where we store

data on common C anti-patterns

● Human Ability - We won’t be able to think of every possible error or antipattern

that a user could run into

2.3 ENGINEERING STANDARDS

First and foremost, we will follow the standards that Michigan Tech has set with their

Java and MATLAB Code Critiquers. As we will be using C and Python, we will abide by

best practices and standards for the C and Python languages. Since there is also a strong

possibility that we will need to be creating our own databases, we will also ensure our

databases and ER diagrams are standardized. The communication between the UI and

the backend will also have to be standardized.

2.4 INTENDED USERS AND USES

This project will benefit any novice programmers working in C, as it will provide them

with a user-friendly interface that will both debug their code and check for antipatterns.

More specifically, this will be implemented in Iowa State’s CPR E 288 class to help those

students write better C code. Michigan Tech will also eventually implement this

alongside the other code critiquers they have already written or are currently working on.



3 - Project Plan

3.1 TASK DECOMPOSITION

● Create database to store desired anti-patterns

○ Description: Create a database to store desired anti-patterns and test

code.

○ Justification: This is necessary for the functional requirement that the

program should be able to communicate with a database that stores the C

antipatterns.

○ Sub tasks:

■ Create tables with necessary fields in the database

■ Insert anti-pattern data into the tables

● Connect application to database to read from anti-pattern data

○ Description: The front-end application must be connected to the backend

database.

○ Justification: This fulfills the functional requirement that the program

should be able to communicate with a database that stores the C

antipatterns.

○ Subtasks:

■ Set up toy database to get the initial connection

■ Set up to official anti-pattern database

● Handle file upload

○ Description: The application allows users to choose a file to be uploaded

to the critiquer system

○ Justification: This fulfills the functional requirement that files in C should

be uploaded successfully.

○ Sub tasks:

■ Set up a way to prompt the user for a file to upload

■ Read the file data into the application

● System identifies desired compile errors

○ Description: The application is able to identify at least 5 compile time

errors upon being run with a sample of code.

○ Justification: This is necessary for the functional requirement of catching

all compile errors.

○ Sub tasks:

■ Groups of similar anti-patterns



● Provide feedback for at least 1 anti-pattern

○ Description: The application must provide the user with useful

information on what their error is and potential ways to fix the error.

○ Justification: This fulfills the UI requirement for providing feedback to

the user in a way they can understand and the functional requirement for

the program should be able to compile and run the uploaded code.

○ Sub tasks

■ Terminal feedback

■ GUI feedback

● System identifies desired run-time errors

○ Description: The application is able to identify at least 5 run-time errors

upon being run with a sample of code.

○ Justification: This is necessary for the functional requirement of catching

all run-time errors that unexpectedly stop the program.

○ Sub tasks

■ Groups of similar anti-patterns

● System identifies desired style errors

○ Description: The application is able to identify at least 5 style errors.

○ Justification: This is necessary for the functional requirement of catching

most style errors.

○ Sub tasks

■ Groups of similar anti-patterns

● Allow professor to add more anti-patterns to database

○ Description: The professor is able to add a new anti-pattern to the

database through the user interface.

○ Justification: This fulfills the maintainability requirement of the database

and should be easy to update with new antipatterns as professors find

more.

○ Sub tasks

■ Create interface to submit

■ Connect the interface to the database

● Connect application to Canvas

○ Description: Students should be able to upload their code to Canvas using

an external app.

○ Justification: This ties into the maintainability requirement that the

project should be of the same design and standard that Michigan Tech has

made with their other code critiquers. Currently, other code critiquers

work by connecting to Canvas with an external app.

○ Sub tasks

■ Use LTI to connect application



3.2 PROJECT MANAGEMENT/TRACKING PROCEDURES

We will use the agile project management style as we have all used it before and have

found it effective. Dr. Rover and Michigan Tech also have experience with Agile, making

collaboration easier.

We will use the GitLab repo and the GitLab issues to track our progress and store our

project.

3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

Key milestones:

● Must recognize at least 10 anti-patterns and give valuable feedback

● Should recognize and give feedback on roughly 50% compile-time errors

● Should recognize and give feedback on roughly 50% runtime errors

● Critiquer does not crash on unrecognized errors



3.4 PROJECT TIMELINE/SCHEDULE

Task name Start date End date

Create DB 1/22/2024 2/4/2024

Connect to DB 1/22/2024 2/4/2024

File upload 1/22/2024 2/4/2024

Compile time errors 2/5/2024 3/3/2024

Run-time errors 3/4/2024 3/24/2024

Style errors 3/25/2024 4/7/2024

1st full feedback 4/8/2024 4/21/2024

Professor can add to DB 4/22/2024 5/6/2024



3.5 RISKS AND RISK MANAGEMENT/MITIGATION

Agile projects can associate risks and risk mitigation with each sprint.

Risks:

1. Create Database: database is not created, 0.1

2. Connect To Database: application can’t connect to database, 0.1

3. File Upload: file is not uploaded correctly, 0.5

a. Reasoning: Users could potentially upload malicious files.

b. Solution: We could run code in its own environment so it will not harm or

interfere with our application.

4. Provide feedback for antipatterns: feedback is not printed correctly, 0.1

5. System identifies compiler errors: compiler error is not identified or is identified

incorrectly, 0.2

6. System identifies run-time errors: runtime error is not identified or is identified

incorrectly 0.3

7. System identifies style errors: style error is not identified or is identified

incorrectly 0.3

8. Allow professors to add antipatterns to the database: professors are unable to

add antipatterns to the database, 0.5

a. Reasoning: Users could potentially add erroneous or malicious

antipatterns to the database.

b. Solution: We can sanitize the data that is put into the database.

9. Connect application to Canvas: application can’t be connected to Canvas, 0.1

3.6 PERSONNEL EFFORT REQUIREMENTS

Task Effort

Points

Explanation

Create database for anti-patterns

Create tables for

database

2 Only need 1 or 2 simple tables

Insert anti-patterns

into database

20 Need to create regular expressions from anti patterns

Connect application to database

Create toy database

for initial connection

2 Simple initial connection

Connect actual

database

3 Experience from initial connection will make this easy



Handle file uploads

Prompt user for file 2 Command line prompt - “Enter filename:”

Read file data into

application

4 Only loading a file into the application and making sure

we can access the data after building an Abstract Syntax

Tree

System identifies errors

Compile errors 30 Need to worry about multiple files. Need to run the

program through regex data.

Run-time errors 40 Textual analysis done without actually running the

program

Style errors 15 Match the regexes from the database

Provide feedback for antipatterns

Terminal feedback 5 Output formatted feedback generated by the program

GUI feedback 15 Have to build a GUI that will eventually connect to the

main application

Allow professors to add antipatterns to the database

Create interface to

add antipatterns

5 Basic form for new antipattern information, which then

gets stored in the database

Connect interface to

database

5 Create an SQL INSERT statement to put the new

anti-pattern data into the database

Connect application to Canvas

Connect application 20 After completing research, it should be as simple as

importing our already completed application.

3.7 OTHER RESOURCE REQUIREMENT

We have established that we will need some sort of server to host the anti-pattern

database. A temporary solution for this could be the High Performance Clusters that we

have access to through class. For a longer-term solution, we can communicate to

Michigan Tech to see if they have a server we can make use of.



4 Design

4.1 DESIGN CONTENT

The Code Critiquer will be first and foremost an application that students can upload

their work to, with the ability to configure what errors they want to look for. They would

receive feedback that is similar to compiler feedback, except more specific and worded in

a way that is comprehensible by even programming novices. Eventually, the application

would be hooked up to Canvas as an External App using LTI tools.

4.2 DESIGN COMPLEXITY

The design we came up with includes multiple components such as the GUI, main

application, abstract syntax tree builder, the database, and the Canvas LTI module. One

engineering principle we use is the layered architecture structure. This is the architecture

design where each module can only access the layer above and below it. This limits the

amount of dependencies each component needs and lowers the chance of a circular

dependency.

One challenging requirement that we have would be to generate valuable feedback for

errors in C code. Currently the GNU C compiler doesn’t provide feedback on how to fix

certain errors. Another challenging requirement is to allow professors to upload tests to

run student’s code with.

4.3 MODERN ENGINEERING TOOLS

For the development of this design, we will use figma to create a front-end layout.

Depending on the preference of the developer, we will use either Visual Studio Code or

JetBrains software for the actual development of the code.

A big tool we are leveraging is the Clang Compiler and its Static Analyzer. This system

allows us to quickly generate the required foundational structures (abstract syntax tree)

for identifying antipatterns in the student’s code. Additionally, we will be employing the

Python language to develop our system as it provides easy to use libraries and syntax.

The database will be through MySQL.



4.4 DESIGN CONTEXT

Code Critiquer in C is designed specifically for programming learners, to provide instant

feedback to their code and improve their programming skills. It also benefits teachers, as

it can be used in tandem with course work, and save them valuable time that would be

spent correcting simple errors.

Area Description Effects of Code Critiquer in C

Public health,

safety, and

welfare

How does your project affect the

general well-being of various

stakeholder groups? These

groups may be direct users or

may be indirectly affected (e.g.,

solution is implemented in their

communities)

This project will greatly improve the

mental health of students who are

struggling to learn programming but feel

that they have nowhere to go for help to

learn.

Global,

cultural, and

social

How well does your project

reflect the values, practices, and

aims of the cultural groups it

affects? Groups may include but

are not limited to specific

communities, nations,

professions, workplaces, and

ethnic cultures.

There are a number of ways that Code

Critiquer in C can both positively and

negatively impact our profession. It can

be used to create a generation of

programmers who have incredibly strong

programming skills. On the other hand, if

the Code Critiquer in C were to become

good enough, future programmers may

become lazy and rely on the critiquer to

make corrections. It would be similar to

how our generation has become

increasingly poor spellers as we have

become reliant on autocorrect.

Environmenta

l

What environmental impact

might your project have? This

can include indirect effects, such

as deforestation or

unsustainable practices related

to materials manufacture or

procurement.

This project will have a minimal

environmental impact, except for the

energy it takes to run the device that the

application will be run on.

Economic What economic impact might

your project have? This can

include the financial viability of

your product within your team

or company, cost to consumers,

or broader economic effects on

communities, markets, nations,

and other groups.

This project has the potential to inflate

the market with programmers, as

students will feel more supported during

the learning process and therefore will be

less likely to drop out. Additionally, if the

Code Critiquer in C technology could

become advanced enough, it could

possibly create a decrease in demand for

programming tutors.



4.5 PRIOR WORK/SOLUTIONS

We are extremely fortunate to have contact with Michigan Tech, who have already

created Code Critiquers in MATLAB, Python, and Java. They have graciously allowed us

to analyze their code critiquers to aid in the development of our own.

Michigan Tech's Python Code Critiquer:

Advantages: Due to many useful libraries that Python has available, we have decided

to create our C Code Critiquer in Python. As such, the Python Code Critiquer, which

is written in Python, will have the most similar code structure to ours.

Shortcomings: As C is a much lower level language and has the tricky issue of

memory management, our C Code critiquer will end up being much more complex

than the Python Code Critiquer.

Michigan Tech's Java Code Critiquer:

Advantages:Michigan Tech's Java Code critiquer has the most thorough database of

antipatterns and will be of the most use to us, as Java and C do have their similarities

(though many, many differences).

Shortcomings: The Java Code Critiquer is written in Java, and as we will be writing

our Code Critiquer in Python, this code structure will be of no use to us.

Michigan Tech's MATLAB Code Critiquer:

The MATLAB Code Critiquer does not offer anything unique to us that the Python

and Java Code Critiquer don't already offer. Nevertheless, it is still a useful tool in

our pockets.

Pros for our Code Critiquer In C compared to other Code Critiquers:

As far as we are aware of, there has been no Code Critiquer made for a language as

low level as C. Thus, our project will fill an important gap in autonomous code

critiquing for students learning C.

Cons for our Code Critiquer In C compared to other Code Critiquers:

N/A

4.6 DESIGN DECISIONS

1. We had to make the decision to allow professors to upload their own code.

2. We had to make the decision to implement as a command-line application before

creating a GUI/importing to Canvas

3. We had to make decisions to allow for personal configurations. For example, to choose

whether you want to check for certain types of errors, or whether you want to critique

only one file or multiple files via a Makefile.



4.7 PROPOSED DESIGN

4.7.1 Design 0 (Initial Design)

The C code critiquer system consists of 3 main components: the website, the database,

and the critiquer server. After the student logs in, they can upload their code to the

website or canvas. From there, the code critiquer logic will be called from the server. This

component will check the uploaded code against the antipatterns stored in the database.

After finding all the errors in the student’s code, the critiquer will return the feedback to

the student through where the code was uploaded from.

Student Code: This is the code files that the student will submit. This can either be in

the form of a single C file, or will require the student to upload a makefile for

compilation. This should fulfill the functional requirements of allowing a student to

upload their code and the performance requirements of uploading the code in an

acceptable amount of time. This is a vital aspect of the functional requirement that

students should be able to upload code to the application.

Code Critiquer Application: This will be the interface that allows students to

interact with the system (upload code, see results, etc). This will help fulfill many of the

functional requirements, such as students being able to upload code and receive

feedback on errors.

LTI Module: Connection point between Canvas and the Code Critiquer System. The

LTI Module follows standard practice for creating the connection between LMS and LTI

systems. This will help fulfill the UI Requirement, that the application will have to be run

through a GUI (in this case, Canvas).

Canvas LMS: This is the Canvas, used for grading, that everyone knows and loves here

at Iowa State. Eventually, using the LTI Module, we will connect the application to

Canvas for students to upload their code and receive feedback. This will fulfill the UI

Requirement that the application will be run through a GUI (in this case, Canvas).

Critiquer Server: This will consist of the code critiquer application and the abstract

syntax tree builder. The code critiquer will analyze the student’s code by using the

anti-pattern data in the database and generate appropriate feedback based on any errors

found. The abstract syntax tree builder reads in the students code and generates an

abstract syntax tree for the critiquer to analyze. This will help fulfill the functional

requirement that students will receive feedback from antipatterns stored on a database

(which will be hosted on the server).

Database: The database will hold all of the information for the antipatterns to check the

uploaded code against. This is critical to the functionality of the software as the system

needs a place to store all of the antipatterns. The database will also hold the tests that the

instructors upload for the particular assignment. This is also crucial to the requirement

that the system needs to run the uploaded code. Without these tests, there is no way to

run the code and have an expected output. This will help fulfill the functional

requirement that students will receive feedback from antipatterns stored on a database.



System Sketch:

ER Diagram of the Database:



Functionality

The Code Critiquer will be first and foremost an application that students can upload

their work to. They can either upload a single file to get it critiqued, or upload a project,

which would require a makefile. Once the file or project is uploaded, they would click a

very prominent "Critique" button, and would receive feedback. On the backend, the

application would be hooked up to a database with antipatterns, and the program would

scan the file or project for the presence of these antipatterns. The feedback would be

similar to compiler feedback, except more specific and worded in a way that is

comprehensible by even programming novices, Eventually, the application would be

hooked up to Canvas as an External App using LTI tools.

The current design satisfies the functional and non-functional requirements very well.

4.7.2 Design 1 (Design Iteration)

4.8 TECHNOLOGY CONSIDERATIONS

4.9 DESIGN ANALYSIS



5 Testing

Our testing strategy consists of using the unittest library to test our Python code which

makes up the majority of our code base. For any JavaScript code we include in our user

interface, we will use Jest. One of the challenges we will face when doing our acceptance

testing is that we will need to use student’s code to test that the system generates the

correct feedback and that the system is usable from a student’s perspective.

5.1 UNIT TESTING

The framework we will be using to test our software will be the unittest library for

Python. This should help us easily test all the functions needed for each class.

Additionally, when testing individual units on our UI that use JavaScript, we will be

using the Jest framework. By breaking down our system into these individual units, we

will be able to ensure that individual components are working.

5.2 INTERFACE TESTING

Some of the interfaces in our design will be Abstract Syntax Tree, regex matcher, the user

Interface, and the feedback generator. Because our code will be almost entirely python,

we will use the unittest library to create test suites for those interfaces. For any

javascript we include in our user interface, we will use Jest to test that code.

5.3 INTEGRATION TESTING

We will have to test three main communications for integration. The first is the

communication between the application logic and the database. We will test this by

attempting to connect to the database and checking for any connection errors. We will

be using the MySQLdb library for connecting the application to the database so we will

have to test any functions we create using this library.

The second integration test category is UI communication. For this we will have to test

that the UI can effectively transmit data from the user to the application logic. Again, we

will have to make sure no errors occur when connecting to the application and no data is

corrupted when trying to make the connection. This will be done by testing manually.

Finally, we will test the canvas integration with the website. This should be relatively

easy as we should be able to just make sure that the website is correctly running inside of

the canvas application and is sending data effectively.

5.4 SYSTEM TESTING

For system testing we will be providing the system with example code and test that the

system generates the expected results. The feedback should be based on the data we

have stored in the database and it should be displayed in the correct way. This will be

done, by using several simple code blocks pre-generated, supplying them to the critiquer

system, and comparing the generated output with our pre-defined expected results. By

doing this, we can verify that ,given the same code, the system works as expected yielding

consistently correct responses.



5.5 REGRESSION TESTING

Regression testing will help ensure that new code pushed to GitLab won’t break the

current functionality. Any previously written tests can help catch unexpected changes.

Therefore, all the tests described in previous sections will be helpful with regression

testing.

Writing tests for every component, even when it seems straightforward and unlikely to

break, can help catch changes that break unexpected parts of the code. Keeping all tests

can also help catch unexpected effects on old code. When writing code locally, making

sure that our local codebase is up to date (pulling from GitLab frequently) can help avoid

merge conflicts. Running all tests before pushing code to GitLab can ensure breakages

are found before being merged into the codebase. Running tests with a local copy of the

database can also ensure changes don’t break anything in the global database.

5.6 ACCEPTANCE TESTING

- Functional

- Goals for compile time, runtime, and style errors should be met with

appropriate feedback. Specifically, successfully give feedback on at least 5

errors in each category.

- Critiquer should not extend the time it takes to run a program by more

than double. (estimate - can change)

- Non-Functional

- Command-line and GUI should be intuitive for novice programmers.

- Modular database with easy extensibility.

Functional tests will have either unit tests or performance tests that pass for each

requirement. Non-functional tests will be reviewed by our faculty mentor, Michigan

Tech’s team, and some beginner programmers from Iowa State.

5.7 SECURITY TESTING

For our project, security is not that high of a concern as we are not storing a lot of

sensitive information in our database. However, we will still want to prevent any

attempts to access the database without permission via SQL injections. Therefore, we

should sanitize all of our SQL queries. In the event we do need to store sensitive

information, we should hash that information and store the cipher text. Testing these

functionalities should be pretty straightforward, as we just need to make sure all queries

are sanitized and no plaintext of sensitive information makes it into the database.

5.8 RESULTS

By developing tests to cover each aspect—unit, integration, system, and so on—we can

ensure that we are meeting functional requirements. By respecting the testing process,

we ensure that we are following best practices to thoroughly develop a system that meets

the guidelines we have previously identified. As a whole, testing provides both

verification and validation of our system.


